1,915 research outputs found

    A Quantum-Gravity Perspective on Semiclassical vs. Strong-Quantum Duality

    Full text link
    It has been argued that, underlying M-theoretic dualities, there should exist a symmetry relating the semiclassical and the strong-quantum regimes of a given action integral. On the other hand, a field-theoretic exchange between long and short distances (similar in nature to the T-duality of strings) has been shown to provide a starting point for quantum gravity, in that this exchange enforces the existence of a fundamental length scale on spacetime. In this letter we prove that the above semiclassical vs. strong-quantum symmetry is equivalent to the exchange of long and short distances. Hence the former symmetry, as much as the latter, also enforces the existence of a length scale. We apply these facts in order to classify all possible duality groups of a given action integral on spacetime, regardless of its specific nature and of its degrees of freedom.Comment: 10 page

    Invariant Regions and Global Asymptotic Stability in an Isothermal Catalyst

    Get PDF
    A well-known model for the evolution of the (space-dependent) concentration and (lumped) temperature in a porous catalyst is considered. A sequence of invariant regions of the phase space is given, which converges to a globally asymptotically stable region BB. Quantitative sufficient conditions are obtained for (the region BB to consist of only one point and) the problem to have a (unique) globally asymptotically stable steady state

    High orders of Weyl series for the heat content

    Full text link
    This article concerns the Weyl series of spectral functions associated with the Dirichlet Laplacian in a dd-dimensional domain with a smooth boundary. In the case of the heat kernel, Berry and Howls predicted the asymptotic form of the Weyl series characterized by a set of parameters. Here, we concentrate on another spectral function, the (normalized) heat content. We show on several exactly solvable examples that, for even dd, the same asymptotic formula is valid with different values of the parameters. The considered domains are dd-dimensional balls and two limiting cases of the elliptic domain with eccentricity ϵ\epsilon: A slightly deformed disk (ϵ0\epsilon\to 0) and an extremely prolonged ellipse (ϵ1\epsilon\to 1). These cases include 2D domains with circular symmetry and those with only one shortest periodic orbit for the classical billiard. We analyse also the heat content for the balls in odd dimensions dd for which the asymptotic form of the Weyl series changes significantly.Comment: 20 pages, 1 figur

    Linear and multiplicative 2-forms

    Full text link
    We study the relationship between multiplicative 2-forms on Lie groupoids and linear 2-forms on Lie algebroids, which leads to a new approach to the infinitesimal description of multiplicative 2-forms and to the integration of twisted Dirac manifolds.Comment: to appear in Letters in Mathematical Physic

    Electromagnetic Oscillations in a Driven Nonlinear Resonator: A New Description of Complex Nonlinear Dynamics

    Full text link
    Many intriguing properties of driven nonlinear resonators, including the appearance of chaos, are very important for understanding the universal features of nonlinear dynamical systems and can have great practical significance. We consider a cylindrical cavity resonator driven by an alternating voltage and filled with a nonlinear nondispersive medium. It is assumed that the medium lacks a center of inversion and the dependence of the electric displacement on the electric field can be approximated by an exponential function. We show that the Maxwell equations are integrated exactly in this case and the field components in the cavity are represented in terms of implicit functions of special form. The driven electromagnetic oscillations in the cavity are found to display very interesting temporal behavior and their Fourier spectra contain singular continuous components. To the best of our knowledge, this is the first demonstration of the existence of a singular continuous (fractal) spectrum in an exactly integrable system.Comment: 5 pages, 3 figure

    A note on the wellposedness of scalar brane world cosmological perturbations

    Full text link
    We discuss scalar brane world cosmological perturbations for a 3-brane world in a maximally symmetric 5D bulk. We show that Mukoyama's master equations leads, for adiabatic perturbations of a perfect fluid on the brane and for scalar field matter on the brane, to a well posed problem despite the "non local" aspect of the boundary condition on the brane. We discuss in relation to the wellposedness the way to specify initial data in the bulk.Comment: 14 pages, one figure, v2 minor change

    Shear-driven size segregation of granular materials: modeling and experiment

    Full text link
    Granular materials segregate by size under shear, and the ability to quantitatively predict the time required to achieve complete segregation is a key test of our understanding of the segregation process. In this paper, we apply the Gray-Thornton model of segregation (developed for linear shear profiles) to a granular flow with an exponential profile, and evaluate its ability to describe the observed segregation dynamics. Our experiment is conducted in an annular Couette cell with a moving lower boundary. The granular material is initially prepared in an unstable configuration with a layer of small particles above a layer of large particles. Under shear, the sample mixes and then re-segregates so that the large particles are located in the top half of the system in the final state. During this segregation process, we measure the velocity profile and use the resulting exponential fit as input parameters to the model. To make a direct comparison between the continuum model and the observed segregation dynamics, we locally map the measured height of the experimental sample (which indicates the degree of segregation) to the local packing density. We observe that the model successfully captures the presence of a fast mixing process and relatively slower re-segregation process, but the model predicts a finite re-segregation time, while in the experiment re-segregation occurs only exponentially in time

    Initial boundary value problem for the spherically symmetric Einstein equations with fluids with tangential pressure

    Get PDF
    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial spacelike hypersurface with a timelike boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.This work was supported by CMAT, Univ. Minho, through FEDER funds COMPETE and FCT Projects Est-OE/MAT/UI0013/2014 and PTDC/MAT-ANA/1275/2014.info:eu-repo/semantics/publishedVersio

    Supersymmetric version of a hydrodynamic system in Riemann invariants and its solutions

    Full text link
    In this paper, a supersymmetric extension of a system of hydrodynamic type equations involving Riemann invariants is formulated in terms of a superspace and superfield formalism. The symmetry properties of both the classical and supersymmetric versions of this hydrodynamical model are analyzed through the use of group-theoretical methods applied to partial differential equations involving both bosonic and fermionic variables. More specifically, we compute the Lie superalgebras of both models and perform classifications of their respective subalgebras. A systematic use of the subalgebra structures allow us to construct several classes of invariant solutions, including travelling waves, centered waves and solutions involving monomials, exponentials and radicals.Comment: 30 page

    Incorporating Forcing Terms in Cascaded Lattice-Boltzmann Approach by Method of Central Moments

    Full text link
    Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to improve numerical stability. It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version. Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.Comment: 55 pages, 4 figure
    corecore